MATHCOUNTS ${ }^{\circ}$) 1 [in $n{ }^{\circ}$ S September 2018 Activity Solutions

Warm-Up!

1. When we expand the given product, we get $(x+1)(y+1)=x y+x+y+1$.
2. We are told that $x=y+3$ and $y=z-5$, which can be rewritten as $y+5=z$. We are asked to determine the value of $z-x$. Substituting we get $(y+5)-(y+3)=y+5-y-3=5-3=2$.
3. The problem text can be translated into the equation $((3 n+5) \times 2)-4=36 \rightarrow 6 n+6=36$. Solving, we see that $6 n=30$, so $n=5$.
4. Initially, the bill was split equally between the five friends, meaning each person would pay one-fifth of the total bill. If we will let a represent one-fifth of the total bill, then the total bill equals 5 a. Since the four friends who paid the bill each paid an amount equal to $a+4$, then the amount of the total bill also equals $4(a+4)=4 a+16$. Setting these two expressions equal to each other and solving for a, we get $5 a=4 a+16$, so $a=16$. Therefore, the total bill was $5 \times 16=80$ dollars.

The Problems are solved in the MATHCOUNTS ${ }^{\circ}$ Jll $\ddagger n$ if video.

Follow-up Problems

5. A total of $40 \times 2.15=\$ 86$ would have been paid for the forty bowls of chocolate ice cream. The remaining $158.20-86=\$ 72.20$ would have been paid for bowls of vanilla ice cream. At $\$ 1.90$ per bowl, that would mean $72.20 \div 1.90=38$ bowls of vanilla ice cream were sold. Thus, a total of $40+38=78$ bowls of ice cream were sold.
6. Let x represent the number of widgets that Marcus has. Then Cindi has $2 x$ widgets. Since Kevin has 219 widgets, it follows that Cindi and Marcus have a combined total of $1020-219=801$ widgets. That means $x+2 x=801 \rightarrow 3 x=801 \rightarrow x=267$. So, Marcus has 267 widgets, and Cindi has twice that number of widgets, which is $2 \times 267=534$ widgets.
7. Since we don't know the dimensions of the rectangle let's call them L and W. We are told that the rectangle has an area of $108 \mathrm{in}^{2}$ which means that $L W=108$. We are looking for the area if the length and width are each increased by 1 . In other words, area $=(L+1)(W+1)$. If we expand this expression we get $L W+L+W+1$. Well we know that $L W=108$. We are told that the perimeter of the rectangle is 42 which means that $2(L+W)=42 \rightarrow L+W=21$. Substituting, we now have $L W+(L+W)+1=108+21+1=130 \mathrm{in}^{2}$.
8. This problem can be solved several ways. First let's solve it algebraically. We are told that Douglas's favorite number is a positive two-digit integer; let's call it AB where A is the tens digit and B is the units digit. That means that the value of his favorite number is $10 A+B$. Then a new number is created, $A B 7$, where A now is the hundreds digit, B now is the tens digit and 7 is the units digit. The value of the new number is $100 \mathrm{~A}+10 \mathrm{~B}+7$. Finally, we are told that the new number is 385 more than Douglas's favorite number. So we have 100A $+10 B+7=10 A+B+385$. Subtracting 10A, B and 7 from both sides yields $90 A+9 B=378$. Dividing both sides by 9 gives us $10 A+B=42$. This is Douglas's favorite number.
